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This paper presents an improved lattice reduction aided MMSE detection based on MIMO system. The proposed detection 
technique reduces the orthogonality defect of the MIMO channel matrix based on LLL algorithm and the Gram-Schmidt 
orthogonalization procedure. BER performance of MMSE detector with and without lattice reduction is analyzed using LLL 
algorithm for 4×4 and 8×8 MIMO system. The proposed detection technique can achieve more reliable estimation, 
compared to the conventional lattice reduction aided detection. 
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1. Introduction 
 

Multiple-input multiple-output (MIMO) 

communication systems have turned out as an attractive 

method to meet the higher data rates demanded by users 

for various applications. To utilize the advantage of 

achieving larger data rate in MIMO systems, the symbol 

detection problem must be solved. The conventional 

maximum-likelihood (ML) detector exhibits exponential 

complexities in both the number of transmit and receive 

antennas and the signal constellation. Minimum mean-

square error (MMSE) detector offers reasonable receiver 

complexity with suboptimal error-rate performance. Thus, 

it is required to introduce symbol detection methods other 

than the ML detector. Lattice reduction aided detection 

(LRAD) methods provide an efficient solution to this 

symbol detection problem [1].  

An efficient method for signal detection is introduced 

based on the mathematical theory of point lattices defined 

by periodic arrangements of discrete points. The basic idea 

is to consider the distortion introduced by the noise-free 

part of a MIMO channel as a representation of a lattice, 

then to perform suboptimal detection on an “improved" 

representation of the channel matrix derived from a 

“reduced" lattice. The suitably reduced lattice facilitates 

the search for the lattice point closest to the received 

vector, shifting most of the computational complexity to a 

pre-processing step before linear detection. Such LRAD 

based approaches to MIMO receiver design have 

significantly closed the gap between feasible yet high-

performance MIMO detection and optimal ML detection 

[2]. 

Recently, the LRAD has been receiving attractive 

attention since it achieves high channel capacity in the 

MIMO systems. The LRAD transforms the column vectors 

of the MIMO channel matrix close to mutually orthogonal, 

followed by the estimation of the transmitted signals [3]. 

The most popular LRAD algorithm is the well-known LLL 

algorithm introduced by Lenstra, Lenstra, and Lovász [4]. 

Using this algorithm, the LRAD achieves highly reliable 

signal estimation and hence good bit error ratios (BERs). 

In particular, the LRAD in a 4×4 MIMO system achieves 

BER relatively close to that with the ML detector. In 

contrast, the LRAD in an 8×8 MIMO system does not 

achieve so good BER performance as the LRAD in a 4×4 

MIMO system does, compared to BERs for the ML 

detector. This is because the signal transmitted from each 

antenna is interfered by more signals transmitted from the 

other antennas in the 8×8 MIMO system than in the 4×4 

MIMO system. This fact implies that the detection scheme 

used for the 4×4 MIMO system is not directly applicable 

to the 8×8 MIMO system and that some adequate 

detection schemes should be needed for the 8×8 and large 

scale MIMO system [5].  

In this paper, we propose an MMSE detection 

technique by combining the LLL algorithm and the Gram-

Schmidt orthogonalization (GSO) procedure, to achieve 

the BER performance closer to the ML detection in the 

4×4 and 8×8 MIMO system. Firstly, the column vectors of 

the channel matrix are reduced using the LLL algorithm. 

Secondly, we reduce LLL-reduced column vectors using 

the GSO procedure. Finally, the GS-reduced column 

vectors become mutually orthogonal and almost of equal 

length. Thus, the decision boundary becomes closer to the 

ML detection. As a result, the proposed scheme improves 

the BER performance, which is very closer to that of ML 

detection both in the 4×4 and 8×8 MIMO systems. 

The remainder of this paper is organized as follows. 

Section 2 presents the proposed system model for MIMO 

system. Section 3 provides the detailed analysis of 

Lenstra-Lenstra-Lovanz (LLL) algorithm. In section 4, 

Gram-Schmidt Orthogonalization (GSO) procedure has 

been described. Section 5 defines Minimum Mean-Square 

Error (MMSE) Estimation. Section 6 gives the computer 
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simulation results and discussion with the detailed analysis 

of improved signal detection using lattice reduction. 

Finally, we summarize and conclude the paper in Section 

7. 

 
2. System model 
 

An n-dimensional lattice is defined as a discrete 

subset of R
n
 that has a group structure under ordinary 

vector addition. A complex lattice consists of all linear 

combinations of the set of linearly independent basis 

column vectors bk, of the basis matrix B. A complex lattice 

formed from basis matrix B is therefore the set of points 

and is given as 
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where,    | ,Z i a ib a b Z  
 
is the ring of Gaussian 

integers. Finding a basis in which the basis vectors are 

reasonably short and almost orthogonal is known as lattice 

basis reduction. 

We consider a MIMO wireless communication system 

with nT transmit and nR receive antennas. The complex 

baseband model for this MIMO system is 

 

         
y = Hx + n                                     (2) 

 

where, y is the received vector, H is the channel matrix, n 

is the channel noise, and x is the vector of transmitted 

symbols, as shown in Fig. 1. The task of the MIMO 

receiver is to recover x from y, based on knowledge of 

both the channel matrix H and the channel noise variance 

σ
2
. We restrict our attention to transmit symbols drawn 

from finite sets of points, known as constellations, drawn 

from a square grid, and in particular 16-QAM 

constellations as shown in Fig. 2(a). We do not consider 

non-rectangular constellations, such as 16-PSK, due to an 

inherent incompatibility with the lattice-theoretic 

framework exploited by lattice reduction aided detection, 

and also the limited applicability of non-rectangular 

constellations in emerging wireless communication 

standards. 

 

 
 

Fig. 1. MIMO wireless channel. 

 

 

 

 

The constellations considered are formed from a 

subset of scaled and shifted Gaussian integers. We restrict 

attention to the subsets shown in Fig. 2(b). We refer to 

constellations formed in this manner as Gaussian integer 

constellations. The constellation An employed at the n
th

 

transmit antenna is given as 
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Where, Cn is the average energy of Xn. Dividing each 

element of Xn by Cn ensures that An has unity average 

energy and is referred to as normalized constellations. For 

square QAM constellations such as those in Fig. 2(a), Cn = 

(|Xn| − 1) /6. In summary, the transmitted symbols xn are 

formed by scaling of the elements as 
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(a)                                  (b) 

Fig. 2. Signal space diagram a) 16-QAM constellations  

b) Scaled constellation. 

 

 

The error probability of a detector is determined by 

the distance of constellation points (mapped by H) from 

the associated decision boundaries. The essential idea of 

LRAD is to obtain a “more orthogonal” representation for 

the channel realization H, before detection using a low-

complexity (sub-optimal) receiver.  
 

 
3. Lenstra-Lenstra-Lovanz (LLL) algorithm 
 

The Lenstra-Lenstra-Lovász (LLL) algorithm was 

originally published as a lattice reduction algorithm 

operating on real-valued matrices. Many works use the 

real decomposition of the complex-valued MIMO 

transmission model. Lattice reduction methods can operate 

on both real and complex integer lattices and in particular 

the LLL algorithm has been extended for complex lattice 

reduction.  

The complex LLL (CLLL) algorithm can be 

summarized as follows. We make the following 

definitions: 
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I. Hi is the squared Euclidean norm of the 

orthogonal vectors produced by the Gram-

Schmidt orthogonalization (GSO) of H. 

II. μij is the ratio of the length of the orthogonal 

projection of the i
th

 basis onto the j
th

 orthogonal 

vector and the length of the j
th

 orthogonal vector. 

III. Hi
L
 and T

i
 represent the values of the reduced 

basis and transform after the i
th

 step of the LLL 

algorithm. 

IV. Initially, H
0
L  = H and T

0
 = InT. 

V. k is the index of the current column of H being 

processed such that 2 ≤ k ≤ nT and δ satisfying ¼ 

< d < 1 is a scale factor. 

The LLL algorithm consists of three basic steps: 

a) H and μ are computed using a modified GSO 

procedure. 

b) Size reduction aims to make basis vectors shorter 

and more orthogonal by asserting the condition 

that |R(μk ,j)| ≤ 0.5 for all j < k. 

c) Basis vectors hk−1 and hk are swapped if a so-

called swapping condition is satisfied such that 

size reduction can be repeated to make basis 

vectors shorter. 

 
 
4. Orthogonality defect 
 

In application to MIMO system, we want a basis 

whose vectors are as orthogonal as possible. One metric for 

measuring the orthogonality of a basis is called 

the orthogonality defect. The orthogonality of a matrix H 

can be quantified using the orthogonality defect, defined as 
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where, hk is the k
th

 column of H, δ(H) ≥ 1 for all H and 

δ(H) = 1 if and only if the columns of H are orthogonal. 

When the number of columns and rows of H are equal, the 

denominator can be simplified to |det(H)|. From equation 

(5), matrices with correlated columns or larger column 

norms will result in higher orthogonality defects. This also 

causes their inverse or generalized inverse to have larger 

row norms, leading to noise enhancement. The matrices 

with a lower orthogonality defect provide less noise 

enhancement in MMSE-based detectors and the 

probability of error is reduced. 

To illustrate the impact of lattice reduction on 

orthogonality defect, we generate m×m random matrices 

by considering each element in the matrix uniformly 

between 0 and 1. The orthogonality defect was calculated 

using equation (5) both before and after lattice reduction. 

For dimension m from 2 to 8, the average orthogonality 

defect before and after the LLL reduction is shown in Fig. 

3. The effect of lattice reduction on orthogonality defect is 

clearly apparent. The orthogonality defect is reduced by 

orders of magnitude. It is this improvement that reduces 

the error rate of lattice reduction based MMSE detector.  

 

 
 

Fig. 3. Orthogonality defect before and after the LLL 

reduction. 

 

 

5. Minimum mean-square error (MMSE)  
    estimation 
 

MMSE estimation acts to balance the reduction of the 

interference caused by H and the noise enhancement due 

to correlation of the columns in H. Rather than completely 

remove the effect of the MIMO channel, MMSE 

estimation works to find the estimate of the vector of 

transmitted symbols xMMSE as follows:\ 

 
^

2
arg minMMSE MMSEx W y x                  (6) 

 

where, xMMSE is found by independently rounding each 

element of  ˜x to the nearest constellation point. 

 

 

6. Lattice reduction aided improved signal 
    detection for MIMO system 
 

In general, the linear detection such as MMSE 

methods may increase the noise component in the course 

of linear filtering, thereby degrading the performance. 

Such noise enhancement problem becomes critical, 

especially when the condition number of channel matrix 

increases. Lattice reduction method can be useful for 

reducing the condition numbers of channel matrices. Fig.  

4 illustrates two different sets of basis vectors that span the 

same space for two transmit antenna cases. Each vector 

corresponds to one of two columns in the channel matrix. 
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Fig. 4. Two sets of basis vectors that span the same space 

(a) basis vector  set  with  a  large  condition  number (b)  

                        orthogonal basis vector set. 

 
The basis vector set in Fig. 4(a) has a larger condition 

number than that in Fig. 4(b). A basis vector set with a 

small condition number reduces the noise enhancement in 

the linear MMSE detection. When the basis vectors are 

orthogonal as in Fig. 4(b), there is no noise enhancement 

at all in the process of linear filtering. 

Lattice basis reduction reduces the orthogonality 

defect, thereby reducing noise enhancement. This is 

achieved by finding a closer to orthogonal set of basis 

vectors. This reduced lattice basis is found by optimizing 

the generating matrix, which in the present application is a 

MIMO channel matrix realization. This closer-to-

orthogonal set is found using elementary operations on 

basis vectors. Complex integer linear combinations of the 

column vectors of H are taken to form the reduced matrix 

H
L
. 
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where, T is a uni-modular matrix with complex integer 

entries and det(T) = ±1, therefore T
−1

 also contains only 

complex integer entries. 

Once the lattice reduced channel matrix is found, we 

then calculate the pseudo-inverse as would be done in 

MMSE detection. LRAD therefore operates using the 

following steps: 

1. Find the reduced lattice basis 

2. Use the pseudo-inverse of the reduced basis to form 

estimates 

3. Quantize estimates to x 

4. Transform and bound points to constellation points 

The received vectors y is multiplied with the pseudo-

inverse of the reduced basis H
L
 to find a soft estimate of 

the vector of transmitted symbols in the reduced domain. 

These symbols are then quantized to an integer grid to find 

an estimate of the vector of transmitted symbols.  

Fig. 5 shows the BER performance of MMSE based 

4×4 MIMO system with and without lattice reduction. For 

example, considering SNR 10 dB, we observe that MMSE 

with lattice reduction have the Pe = 10
-4

 while without 

lattice reduction we have, Pe = 10
-1

. Figure 6 shows the 

BER performance of MMSE based 8×8 MIMO system 

with and without lattice reduction. For example, 

considering SNR 10 dB, we observe that MMSE with 

lattice reduction have the Pe = 10
-7

 while without lattice 

reduction we have, Pe = 10
-5

. We can summarize that the 

MMSE detector takes the advantage of the diversity i.e. 

BER performance is improved when we increase the 

number of transmitting and receiving antennas in the 

MIMO system. But the trade-off is the computation 

complexity. In both cases lattice reduction provides 

significant improvement in BER performance. Lattice 

reduction based MMSE signal detection is a powerful pre-

processing steps for a MIMO system. 

 

 

Fig. 5. BER vs Eb/No for MMSE with and without lattice 

reduction for 4×4 MIMO system. 

 

 
Fig. 6. BER vs Eb/No for MMSE with and without lattice 

reduction for 8×8 MIMO system. 

 

 
7. Conclusion 
 

Lattice reduction based MMSE signal detection for 

MIMO system was investigated and performance 

improvement in terms of BER was demonstrated. The 

proposed method improves the BER performances in both 

the 4×4 and 8×8 MIMO systems. This improved signal 

detection was achieved because the GS procedure creates 

the column vectors of the reduced channel matrix to be 

mutually purely orthogonal. Hence the decision boundary 

became closer to the ML detection. 
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